Process-based Parallelism

The following is the output we get when we use the preceding command:

76 Pythan Shell =RASN X

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [M5C w.1600 32 bit (Int _J

el}] on win3Z
Type "copyright™, "credits" or "license ()" for more information.
> RESTART

g e g

Process before execution: <Process(Process-1, initial)>» False
Process running: <Process (Process-1, started)> True

Procezss terminated: <Process(Process-1, stopped[SIGTEEREM])> True
Process joined: <Process(Process-1, stopped[S5IGTERM])> False

Process exit code: -15
> | -
Ln:10|Col: 4
— 4

We create the process and then monitor its lifetime by the is_alive () method. Then, we
finish it with a call to terminate ():

p.terminate()

Finally, we verify the status code when the process is finished, and read the attribute of the
ExitCode process. The possible values of ExitCode are, as follows:

» == 0:This means that no error was produced

» > 0:This means that the process had an error and exited that code

» < 0:This means that the process was killed with a signal of -1 * ExitCode

For our example, the output value of the ExitCode code is equal to -15. The negative value
-15 indicates that the child was terminated by an interrupt signal identified by the number 15.

How to use a process in a subclass

To implement a custom subclass and process, we must:

» Define a new subclass of the Process class

» Overridethe init (self [,args]) method to add additional arguments

» Override the run (self [,args]) method to implement what Process should
when it is started

Once you have created the new Process subclass, you can create an instance of it and then
start by invoking the start () method, which will in turn call the run () method.

[

Chapter 3

How to do it...

We will rewrite the first example in this manner:

#Using a process in a subclass Chapter 3: Process Based #Parallelism
import multiprocessing

class MyProcess (multiprocessing.Process) :
def run(self):
print ('called run method in process: %s' %self.name)
return

if name =
jobs = []
for i in range(5):
p = MyProcess ()
jobs.append (p)
p.start ()
p.join()

= ' main ':

To run the script from the Command Prompt, type the following command:
python subclass process.py
The result of the preceding command is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python subclass process.py

called run method in process: MyProcess-1
called run method in process: MyProcess-2
called run method in process: MyProcess-3
called run method in process: MyProcess-4

called run method in process: MyProcess-5

Each Process subclass could be represented by a class that extends the Process class and
overrides its run () method. This method is the starting point of Process:

class MyProcess (multiprocessing.Process) :
def run(self):
print ('called run method in process: %s' %self.name)
return

&)

Process-based Parallelism

In the main program, we create several objects of the type MyProcess (). The execution of
the thread begins when the start () method is called:

p = MyProcess()
p.start ()

The join () command just handles the termination of processes.

How to exchange objects between

processes

The development of parallel applications has the need for the exchange of data between
processes. The multiprocessing library has two communication channels with which it can
manage the exchange of objects: queues and pipes.

Communication
Channels

Communication channels in the multiprocessing module

Using queue to exchange objects

As explained before, it is possible for us to share data with the queue data structure.

A queue returns a process shared queue, is thread and process safe, and any serializable
object (Python serializes an object using the pickable module) can be exchanged through it.

Chapter 3

How to do it...

In the following example, we show you how to use a queue for a producer-consumer problem.
The producer class creates the item and queues and then, the consumer class provides
the facility to remove the inserted item:

import multiprocessing
import random

import time

class producer (multiprocessing.Process) :
def init (self, queue):
multiprocessing.Process. init (self)
self.queue = queue

def run(self)
for i in range(10):

item = random.randint (0, 256)

self.queue.put (item)

print ("Process Producer : item %d appended to queue %s"\

% (item,self.name))

time.sleep (1)
print ("The size of queue is %s"

°

% self.queue.gsize())

class consumer (multiprocessing.Process) :
def init_ (self, queue):
multiprocessing.Process.__init__ (self)
self.queue = queue

def run(self):
while True:
if (self.queue.empty()) :
print ("the queue is empty")
break
else
time.sleep(2)
item = self.queue.get ()
print ('Process Consumer : item %d popped from by %s \n'\

% (item, self.name))
time.sleep (1)

&)

Process-based Parallelism

if _name_ == '_main_ ':

queue = multiprocessing.Queue ()
process_producer = producer (queue)
process_consumer = consumer (queue)
process_producer.start ()
process_consumer.start ()
process_producer.join()
process_consumer.join ()

This is the output that we get after the execution:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python using queue.py

Process Producer : item 69 appended to queue producer-1
The size of queue is 1

Process Producer : item 168 appended to queue producer-1
The size of queue is 2

Process Consumer : item 69 popped from by consumer-2
Process Producer : item 235 appended to queue producer-1
The size of queue is 2

Process Producer : item 152 appended to queue producer-1
The size of queue is 3

Process Producer : item 213 appended to queue producer-1
Process Consumer : item 168 popped from by consumer-2
The size of queue is 3

Process Producer : item 35 appended to queue producer-1
The size of queue is 4

Process Producer : item 218 appended to queue producer-1
The size of queue is 5

Process Producer : item 175 appended to queue producer-1
Process Consumer : item 235 popped from by consumer-2
The size of queue is 5

Process Producer : item 140 appended to queue producer-1
The size of queue is 6

Process Producer : item 241 appended to queue producer-1
The size of queue is 7

Process Consumer : item 152 popped from by consumer-2

Process Consumer : item 213 popped from by consumer-2

(5]

Chapter 3

Process Consumer : item 35 popped from by consumer-2
Process Consumer : item 218 popped from by consumer-2
Process Consumer : item 175 popped from by consumer-2
Process Consumer : item 140 popped from by consumer-2
Process Consumer : item 241 popped from by consumer-2

the queue is empty

The multiprocessing class has its Queue object instantiated in the main program:

if name == ' main_ ':
queue = multiprocessing.Queue ()

Then, we create the two processes, producer and consumer, with the Queue object as an
attribute:

process_producer = producer (queue)
process_consumer = consumer (queue)

The process producer is responsible for entering 10 items in the queue using its put ()
method:

for i in range(10) :
item = random.randint (0, 256)
self.queue.put (item)

The process consumer has the task of removing the items from the queue (using the get
method) and verifying that the queue is not empty. If this happens, the flow inside the while
loop ends with a break statement:

def run(self):
while True:

if (self.queue.empty()):
print ("the queue is empty")
break

else
time.sleep(2)
item = self.queue.get ()
print ('Process Consumer : item %d popped from by %s

\n'\

% (item, self.name))
time.sleep(1)

7}

Process-based Parallelism

There's more...

A queue has the JoinaleQueue subclass. It has the following two additional methods:

» task_done (): This indicates that a task is complete, for example, after the get ()
method is used to fetch items from the queue. So, it must be used only by queue
consumers.

» Jjoin(): This blocks the processes until all the items in the queue have been
achieved and processed.

Using pipes to exchange objects

The second communication channel is the pipe data structure.
A pipe does the following:

» Returns a pair of connection objects connected by a pipe

» Inthis, every object has send/receive methods to communicate between processes

How to do it...

Here is a simple example with pipes. We have one process pipe the gives out numbers from
0 to 9 and another process that takes the numbers and squares them:

import multiprocessing

def create items (pipe) :
output pipe, = pipe
for item in range(10) :
output pipe.send(item)
output pipe.close()

def multiply items(pipe 1, pipe 2):
close, input pipe = pipe 1
close.close()
output pipe, = pipe 2
try:

while True:
item = input pipe.recv()
output pipe.send(item * item)
except EOFError:
output pipe.close()

Chapter 3

if name == ' main ':

#First process pipe with numbers from 0 to 9
pipe 1 = multiprocessing.Pipe (True)
process pipe 1 = \
multiprocessing.Process\
(target=create items, args=(pipe 1,))
process pipe 1l.start()

#second pipe,
pipe 2 = multiprocessing.Pipe (True)
process _pipe 2 = \
multiprocessing.Process\
(target=multiply items, args=(pipe 1, pipe 2,))
process pipe 2.start()

pipe 1[0].close()
pipe 2[0] .close ()

try:
while True:

print (pipe 2[1] .recv())
except EOFError:
print ("End")

The output obtained is as follows:

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bdB8afb%0ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright™, "credits" or "license()" for more information.

> RESTART
S

]

Process-based Parallelism

Let's remember that the pipe () function returns a pair of connection objects connected by a
two way pipe. In the example, out _pipe contains the numbers from O to 9, generated by the
target function create items ():

def create items (pipe) :
output pipe, = pipe
for item in range(10) :
output pipe.send(item)
output pipe.close()

In the second process, we have two pipes: the input pipe and final output pipe that contains
the results:

process pipe 2 = multiprocessing.Process (target=multiply items,
args=(pipe 1, pipe 2,))

These are finally printed as:

try:
while True:
print (pipe 2[1].recv())
except EOFError:
print ("End")

How to synchronize processes

Multiple processes can work together to perform a given task. Usually, they share data. It is
important that the access to shared data by various processes does not produce inconsistent
data. Processes that cooperate by sharing data must therefore act in an orderly manner in
order to access that data. Synchronization primitives are quite similar to those encountered
for the library and threading.

They are as follows:

» Lock: This object can be in one of the states: locked and unlocked. A lock object
has two methods, acquire () and release (), to manage the access to a shared
resource.

» Event: This realizes simple communication between processes, one process signals
an event and the other processes wait for it. An Event object has two methods,
set () and clear (), to manage its own internal flag.

» Condition: This object is used to synchronize parts of a workflow, in sequential or
parallel processes. It has two basic methods, wait () is used to wait for a condition
andnotify all () is used to communicate the condition that was applied.

5]

Chapter 3

Semaphore: This is used to share a common resource, for example, to support a fixed
number of simultaneous connections.

RLock: This defines the recursive 1ock object. The methods and functionality for
RLock are the same as the Threading module.

Barrier: This divides a program into phases as it requires all of the processes to
reach it before any of them proceeds. Code that is executed after a barrier cannot
be concurrent with the code executed before the barrier.

How to do it...

The example here shows the use of barrier () to synchronize two processes. We have
four processes, wherein processl1 and process2 are managed by a barrier statement, while
process3 and process4 have no synchronizations directives:

import multiprocessing

from multiprocessing import Barrier, Lock, Process
from time import time
from datetime import datetime

def test_with_barrier (synchronizer, serializer):

def

name = multiprocessing.current process () .name
synchronizer.wait ()
now = time ()
with serializer:
print ("process %s ----> %s" \
% (name, datetime.fromtimestamp (now)))

test without barrier() :
name = multiprocessing.current process () .name
now = time ()
print ("process %s ----> %s" \
% (name ,datetime.fromtimestamp (now)))

if __name_ == '_main_ ':

synchronizer = Barrier(2)
serializer = Lock()
Process (name='pl - test with barrier'\
,target=test _with barrier,\
args= (synchronizer, serializer)) .start ()
Process (name='p2 - test with barrier'\
,target=test _with barrier,\
args= (synchronizer, serializer)) .start ()
Process (name='p3 - test without barrier'\

e

Process-based Parallelism

,target=test without barrier) .start ()
Process (name='p4 - test without barrier'\
,target=test without barrier) .start ()

By running the script, we can see that process1 and process2 print out the same timestamps:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python process barrier.py

process pl - test with barrier ----> 2015-05-09 11:11:33.291229
process p2 - test with barrier ----> 2015-05-09 11:11:33.291229
process p3 - test without barrier ----> 2015-05-09 11:11:33.310230
process p4 - test without barrier ----> 2015-05-09 11:11:33.333231

In the main program, we created four processes; however, we also need a barrier and lock
primitive. The parameter 2 in the barrier statement stands for the total number of process
that are to be managed:

if name == ' main ':

synchronizer = Barrier(2)

serializer = Lock()

Process (name='pl - test with barrier'\
,target=test _with barrier,\
args= (synchronizer, serializer)) .start ()

Process (name='p2 - test with barrier'\
,target=test _with barrier,\
args= (synchronizer, serializer)) .start ()

The test_with barrier function executes the barrier's wait () method:

def test with barrier(synchronizer, serializer):
name = multiprocessing.current process () .name
synchronizer.wait ()

When the two processes have called the wait () method, they are released simultaneously:

now = time ()
with serializer:
print ("process %s ----> %s" % (name \
,datetime.fromtimestamp (now)))

The following figure shows you how a barrier works with the two processes:

Process P1

Process P2

Process P1

The two Process
are executed

Barrier

Process P2 reaches the Barrier, it
sends a signal to Process P1, and
blocks until P1 reaches the Barrier.

Process P2

Process P1

Barrier

All the Processes are arrived at the
Barrier. They access to their shared
resources to update their local data
and keep on executing.

Process P2

Barrier

Process management with a barrier

How to manage a state between processes

Python multiprocessing provides a manager to coordinate shared information between all its
users. A manager object controls a server process that holds Python objects and allows other

processes to manipulate them.

A manager has the following properties:

» It controls the server process that manages a shared object

» It makes sure the shared object gets updated in all processes when anyone

modifies it

Chapter 3

Process-based Parallelism

How to do it...

Let's see an example of how to share a state between processes:

1. First, the program creates a manager list, shares it between n number of
taskWorkers, and every worker updates an index.

2. After all workers finish, the new list is printed to stdout:

import multiprocessing

def worker (dictionary, key, item):
dictionarylkey]l = item

if mname == ' main ':
mgr = multiprocessing.Manager ()
dictionary = mgr.dict ()
jobs = [multiprocessing.Process\
(target=worker, args=(dictionary, i, i*2))
for i in range(10)
]
for j in jobs:
j.start ()
for j in jobs:
j.join ()
print ('Results:', dictionary)

The output is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python manager.py

key = 0 value = 0

key = 2 value = 4
key = 6 value = 12
key = 4 value = 8
key = 8 value = 16
key = 7 value = 14
key = 3 value = 6
key = 1 value = 2
key = 5 value = 10
key = 9 value = 18

Results: {0: O, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9:
18}

&9

Chapter 3

We declare the manager with the following statement:
mgr = multiprocessing.Manager ()

In the next statement, a data structure of the type dictionary is created:
dictionary = mgr.dict ()

Then, the multiprocess is launched:

jobs = [multiprocessing.Process \
(target=taskWorker, args=(dictionary,i,i*2))
for i in range(10)

]

for j in jobs:
j.start ()

Here, the target function taskWorker adds an item to the data structure dictionary:

def taskWorker (dictionary, key, item):
dictionaryl[key]l = value

Finally, we get the output and all the dictionaries are printed out:
for j in jobs:
j.join()
print ('Results:', d)

How to use a process pool

The multiprocessing library provides the Pool class for simple parallel processing tasks. The
Pool class has the following methods:

» apply(): It blocks until the result is ready.

» apply async (): Thisis a variant of the apply () method, which returns a result
object. It is an asynchronous operation that will not lock the main thread until all the
child classes are executed.

» map (): This is the parallel equivalent of the map () built-in function. It blocks until
the result is ready, this method chops the iterable data in a number of chunks that
submits to the process pool as separate tasks.

5]

Process-based Parallelism

map_async (): This is a variant of the map () method, which returns a result object.
If a callback is specified, then it should be callable, which accepts a single argument.
When the result becomes ready, a callback is applied to it (unless the call failed). A

callback should be completed immediately; otherwise, the thread that handles the
results will get blocked.

How to do it...

This example shows you how to implement a process pool to perform a parallel application.
We create a pool of four processes and then we use the pool's map method to perform a
simple calculation:

def function square(data) :
result = data*data
return result

if __name_ == '_main_ ':
inputs = list (range(100))
pool = multiprocessing.Pool (processes=4)
pool outputs = pool.map(function square, inputs)
pool.close ()
pool.join()
print ('Pool :', pool outputs)

This is the result that we get after completing the calculation:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>\python process pool.py

Pool : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196,
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784,
841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600,
1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704,
2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096,
4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776,
5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744,
7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801]

(5]

